296 research outputs found

    Ramanujan sums for signal processing of low frequency noise

    Full text link
    An aperiodic (low frequency) spectrum may originate from the error term in the mean value of an arithmetical function such as M\"obius function or Mangoldt function, which are coding sequences for prime numbers. In the discrete Fourier transform the analyzing wave is periodic and not well suited to represent the low frequency regime. In place we introduce a new signal processing tool based on the Ramanujan sums c_q(n), well adapted to the analysis of arithmetical sequences with many resonances p/q. The sums are quasi-periodic versus the time n of the resonance and aperiodic versus the order q of the resonance. New results arise from the use of this Ramanujan-Fourier transform (RFT) in the context of arithmetical and experimental signalsComment: 11 pages in IOP style, 14 figures, 2 tables, 16 reference

    Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?

    Full text link
    We study the commutation relations within the Pauli groups built on all decompositions of a given Hilbert space dimension qq, containing a square, into its factors. Illustrative low dimensional examples are the quartit (q=4q=4) and two-qubit (q=22q=2^2) systems, the octit (q=8q=8), qubit/quartit (q=2×4q=2\times 4) and three-qubit (q=23q=2^3) systems, and so on. In the single qudit case, e.g. q=4,8,12,...q=4,8,12,..., one defines a bijection between the σ(q)\sigma (q) maximal commuting sets [with σ[q)\sigma[q) the sum of divisors of qq] of Pauli observables and the maximal submodules of the modular ring Zq2\mathbb{Z}_q^2, that arrange into the projective line P1(Zq)P_1(\mathbb{Z}_q) and a independent set of size σ(q)ψ(q)\sigma (q)-\psi(q) [with ψ(q)\psi(q) the Dedekind psi function]. In the multiple qudit case, e.g. q=22,23,32,...q=2^2, 2^3, 3^2,..., the Pauli graphs rely on symplectic polar spaces such as the generalized quadrangles GQ(2,2) (if q=22q=2^2) and GQ(3,3) (if q=32q=3^2). More precisely, in dimension pnp^n (pp a prime) of the Hilbert space, the observables of the Pauli group (modulo the center) are seen as the elements of the 2n2n-dimensional vector space over the field Fp\mathbb{F}_p. In this space, one makes use of the commutator to define a symplectic polar space W2n1(p)W_{2n-1}(p) of cardinality σ(p2n1)\sigma(p^{2n-1}), that encodes the maximal commuting sets of the Pauli group by its totally isotropic subspaces. Building blocks of W2n1(p)W_{2n-1}(p) are punctured polar spaces (i.e. a observable and all maximum cliques passing to it are removed) of size given by the Dedekind psi function ψ(p2n1)\psi(p^{2n-1}). For multiple qudit mixtures (e.g. qubit/quartit, qubit/octit and so on), one finds multiple copies of polar spaces, ponctured polar spaces, hypercube geometries and other intricate structures. Such structures play a role in the science of quantum information.Comment: 18 pages, version submiited to J. Phys. A: Math. Theo

    A SU(2) recipe for mutually unbiased bases

    Full text link
    A simple recipe for generating a complete set of mutually unbiased bases in dimension (2j+1)**e, with 2j + 1 prime and e positive integer, is developed from a single matrix acting on a space of constant angular momentum j and defined in terms of the irreducible characters of the cyclic group C(2j+1). As two pending results, this matrix is used in the derivation of a polar decomposition of SU(2) and of a FFZ algebra.Comment: v2: abstract enlarged, a corollary added, acknowledgments added, one reference added, presentation improved; v3: two misprints correcte

    Qudits of composite dimension, mutually unbiased bases and projective ring geometry

    Full text link
    The d2d^2 Pauli operators attached to a composite qudit in dimension dd may be mapped to the vectors of the symplectic module Zd2\mathcal{Z}_d^{2} (Zd\mathcal{Z}_d the modular ring). As a result, perpendicular vectors correspond to commuting operators, a free cyclic submodule to a maximal commuting set, and disjoint such sets to mutually unbiased bases. For dimensions d=6, 10, 15, 12d=6,~10,~15,~12, and 18, the fine structure and the incidence between maximal commuting sets is found to reproduce the projective line over the rings Z6\mathcal{Z}_{6}, Z10\mathcal{Z}_{10}, Z15\mathcal{Z}_{15}, Z6×F4\mathcal{Z}_6 \times \mathbf{F}_4 and Z6×Z3\mathcal{Z}_6 \times \mathcal{Z}_3, respectively.Comment: 10 pages (Fast Track communication). Journal of Physics A Mathematical and Theoretical (2008) accepte

    Mutually unbiased phase states, phase uncertainties, and Gauss sums

    Get PDF
    Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in different orthogonal bases is a constant equal to 1/sqrt{d), with d the dimension of the finite Hilbert space, are becoming more and more studied for applications such as quantum tomography and cryptography, and in relation to entangled states and to the Heisenberg-Weil group of quantum optics. Complete sets of MUBs of cardinality d+1 have been derived for prime power dimensions d=p^m using the tools of abstract algebra. Presumably, for non prime dimensions the cardinality is much less. Here we reinterpret MUBs as quantum phase states, i.e. as eigenvectors of Hermitean phase operators generalizing those introduced by Pegg & Barnett in 1989. We relate MUB states to additive characters of Galois fields (in odd characteristic p) and to Galois rings (in characteristic 2). Quantum Fourier transforms of the components in vectors of the bases define a more general class of MUBs with multiplicative characters and additive ones altogether. We investigate the complementary properties of the above phase operator with respect to the number operator. We also study the phase probability distribution and variance for general pure quantum electromagnetic states and find them to be related to the Gauss sums, which are sums over all elements of the field (or of the ring) of the product of multiplicative and additive characters. Finally, we relate the concepts of mutual unbiasedness and maximal entanglement. This allows to use well studied algebraic concepts as efficient tools in the study of entanglement and its information aspectsComment: 16 pages, a few typos corrected, some references updated, note acknowledging I. Shparlinski adde

    Projective Ring Line of an Arbitrary Single Qudit

    Full text link
    As a continuation of our previous work (arXiv:0708.4333) an algebraic geometrical study of a single dd-dimensional qudit is made, with dd being {\it any} positive integer. The study is based on an intricate relation between the symplectic module of the generalized Pauli group of the qudit and the fine structure of the projective line over the (modular) ring \bZ_{d}. Explicit formulae are given for both the number of generalized Pauli operators commuting with a given one and the number of points of the projective line containing the corresponding vector of \bZ^{2}_{d}. We find, remarkably, that a perp-set is not a set-theoretic union of the corresponding points of the associated projective line unless dd is a product of distinct primes. The operators are also seen to be structured into disjoint `layers' according to the degree of their representing vectors. A brief comparison with some multiple-qudit cases is made

    MUBs: From finite projective geometry to quantum phase enciphering

    Full text link
    This short note highlights the most prominent mathematical problems and physical questions associated with the existence of the maximum sets of mutually unbiased bases (MUBs) in the Hilbert space of a given dimensionComment: 5 pages, accepted for AIP Conf Book, QCMC 2004, Strathclyde, Glasgow, minor correction

    Pauli graphs, Riemann hypothesis, Goldbach pairs

    Full text link
    Let consider the Pauli group Pq=\mathcal{P}_q= with unitary quantum generators XX (shift) and ZZ (clock) acting on the vectors of the qq-dimensional Hilbert space via Xs>=s+1>X|s> =|s+1> and Zs>=ωss>Z|s> =\omega^s |s>, with ω=exp(2iπ/q)\omega=\exp(2i\pi/q). It has been found that the number of maximal mutually commuting sets within Pq\mathcal{P}_q is controlled by the Dedekind psi function ψ(q)=qpq(1+1p)\psi(q)=q \prod_{p|q}(1+\frac{1}{p}) (with pp a prime) \cite{Planat2011} and that there exists a specific inequality ψ(q)q>eγloglogq\frac{\psi (q)}{q}>e^{\gamma}\log \log q, involving the Euler constant γ0.577\gamma \sim 0.577, that is only satisfied at specific low dimensions qA={2,3,4,5,6,8,10,12,18,30}q \in \mathcal {A}=\{2,3,4,5,6,8,10,12,18,30\}. The set A\mathcal{A} is closely related to the set A{1,24}\mathcal{A} \cup \{1,24\} of integers that are totally Goldbach, i.e. that consist of all primes p2p2) is equivalent to Riemann hypothesis. Introducing the Hardy-Littlewood function R(q)=2C2pnp1p2R(q)=2 C_2 \prod_{p|n}\frac{p-1}{p-2} (with C20.660C_2 \sim 0.660 the twin prime constant), that is used for estimating the number g(q)R(q)qln2qg(q) \sim R(q) \frac{q}{\ln^2 q} of Goldbach pairs, one shows that the new inequality R(Nr)loglogNreγ\frac{R(N_r)}{\log \log N_r} \gtrapprox e^{\gamma} is also equivalent to Riemann hypothesis. In this paper, these number theoretical properties are discusssed in the context of the qudit commutation structure.Comment: 11 page

    Multi-Line Geometry of Qubit-Qutrit and Higher-Order Pauli Operators

    Full text link
    The commutation relations of the generalized Pauli operators of a qubit-qutrit system are discussed in the newly established graph-theoretic and finite-geometrical settings. The dual of the Pauli graph of this system is found to be isomorphic to the projective line over the product ring Z2xZ3. A "peculiar" feature in comparison with two-qubits is that two distinct points/operators can be joined by more than one line. The multi-line property is shown to be also present in the graphs/geometries characterizing two-qutrit and three-qubit Pauli operators' space and surmised to be exhibited by any other higher-level quantum system.Comment: 8 pages, 6 figures. International Journal of Theoretical Physics (2007) accept\'
    corecore